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Variable-range hopping conduction in semiconductors is determined by the 
asymptotic behavior of impurity wave functions on distances much larger than 
mean interimpurity separation. Scattering of an impurity electron by the other 
impurities situated near its tunneling path is shown to result in a correction Aa 
to electron localization length a. This correction depends on the impurity 
scattering length and impurity concentration N and may be of the order of 
a(Na 3) or a(Na~) 1/2. 
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In 1979 Lifshitz and Kirpichenkov <1) studied tunnel t ransparency of  films 
with randomly spaced impurities. Our paper is devoted to application of  
their ideas to the theory of  the hopping conduction. 

In the case of  variable-range hopping conduction an electron typically 
hops between two impurities 1 and 2 with close energies, separated in space 
by a distance much larger than the average interimpurity distance N-1/3. The 
hopping probability depends on the overlap of  two wave functions of  such 
impurities q/a(r) and qJE(r). Let us assume that for an isolated impurity 
~ , ( r )oce- r /L  This wave function may be considered the probability 
amplitude of  the electron tunneling through the barrier of  the height which is 
equal to the ionization energy of  the impurity. 

We show below that in a light doped semiconductor ( N a 3 ~  1) 
scattering of  the tunneling electron by many impurities situated between 
impurities 1 and 2 results in the correction to the localization length a: 

a(N)  = a + Aa = a[1 + C(Na3) ~'] 
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Numerical coefficient C may be positive or negative and the exponent a may 
be equal 1 or 1/2. 

In spite of the fact that the small correction Aa may considerably affect 
variable-range hopping conductivity it is difficult to find such correction 
using experimental data on the concentration dependence of variable range 
hopping. Investigation of the effect of magnetic field on Aa is more 
promising from the experimental point of view but the theory of 
magnetoresistance is beyond the scope of this paper. 

We consider the wave function of an electron in eigenstate with the 
energy t < 0 localized on the impurity 1. Other impurities are supposed to 
have short-range potentials with the ground state energies randomly 
distributed in the narrow range t o - A ,  t o+A where e 0 < 0 and A 
I t - %[ ~ %. We assume that there are no electrons on the other impurities, 
so that we deal with the one-electron problem. 

Lifshitz and Kirpichenkov {1) have shown that the wave function of 
impurity 1 modified by the scattering may be written in the form of the 
expansion 

V' g~t~ ( 
qq(r) = ~t~ + 7 Ir i --r[  exp - 

+ ~. q/~ ~ exp 
i j  I i j 

•  , r j--  r,.) a + " "  

Iri--rl)a 

Ir,- r/) ! 
a Irj r I 

(2) 

where 

1 ( r )  
gt~-- r(2~za)l/2 exp -- 

is the wave function of the isolated impurity 1, a = h/(2m It]) 1/2, ri, rj are 
coordinates of the scatterers and 

a t  o - (3) 
t o - -  t 

is the scattering length which is supposed to have approximately the same 
value for all impurities. Each term of the expansion (2) may be described by 
some path (see Fig. 1). Owing to the negative sign of the energy t the length 
of the important path should be as small as possible. That is why backward 
scattered waves can be neglected. 
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Fig. 1. Tunneling path with four points of  scattering. 

It is clear that the wave function ~,l(r) depends on the random 
distribution of impurities in space around the vector r. In this sense ~,l(r) is a 
random variable. The averaging procedure depends on the physical problem 
under the study.(2'3) Lifshitz and Kirpichenkov (1) studied tunnel 
transparency of a film with the thickness d. In this case a plane wave of 
energy e falls on a barrier with impurities and the tunnel transparency is 
proportional to 

(, ~(d),2) = exp ( 2d ) 
a + A a  7 (4) 

where the correction Aa I describes the effect of impurity scattering, (...) 
means the averaging over the impurity coordinates. 

In the theory of hopping conduction the magnitude 

2r 
(In ]gtl 2) ~ (5) 

a + A a  

is of interest which is two times the typical value of the exponent of wave 
function v/(r). (2'3) Here we consider just this value. In principle the 
correction Aaf may exceed Aa owing to chains of densely packed impurities 
which penetrate (rarely) through the film and determine its tunnel 
transparency. On the other hand, if relative fluctuations of wave function are 
small the correction Aa s is equal Aa. 

Lifshitz and Kirpichenkov (see Section 4 of Ref. 1) we have shown that 
the relative fluctuations of q/are determined by the parameter B = (Nla2a) 1/2. 
At B ~ 1 fluctuations of q~(r) are small and the result obtained by Lifshitz 
and Kirpichenkov for Aa I is valid for Aa: 

da  = Aaf  = ~Na 3 (6) 

At B >> 1 relative fluctuations of ~, are large. According to the Ref. 1 in this 
case Aa i is not small and A a I ~ a .  We show below that at B > I  the 
correction Aa has the form 

Aa ~ a(Na3) 1/2 in 3/2 B (7) 
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and is much smaller than Aay. At B ~ 1 Eqs. (6) and (7) give the same 
result. Below we refer to the case B > 1 as the fluctuation regime and to the 
case B ,~ 1 as the homogeneous regime. It is seen from the Eq. (6) that in the 
homogeneous regime the correction Aa has the sign of e 0 - e and is propor- 
tional to the impurity concentration. Therefore it may be considered a result 
of the shift of the bottom of a conduction band or of a correction to an 
effective mass. On the other hand, in the fluctuation regime Aa is 
independent of the sign of (e 0 - ~). 

We begin with the derivation of the Eq. (6) at /t > 0. The following 
derivation of the Eq. (6) is less rigorous than the original one of the Ref. 1 
but it is just in the same level of arguments as the following derivation of the 
Eq. (7) which we cannot do more rigorously. 

Let us consider the contribution to the wave function from one term in 
the expansion (2) which corresponds to n scatterings (Fig. 1). We have 
stressed above that for negative energies scattering is mainly in the forward 
direction. So a typical distance between two scattering points along the 
direction of r is equal to I - -  r/n. Let y be a typical deviation of a scattering 
point in the direction laerpendicular to the vector r (see Fig. 1). Then the 
contribution of one path from the point 1 to the point r by the order of value 
is equal to 

~" r y2 
-~- exp (-- --d--- n ~-a ) (8) 

where y2/l is the increase of the distance between two scatterings due to the 
transverse deviation of the path. The total number of such paths may be 
estimated as (NyEl) n, where NyEl is the number of impurities in the cylinder 
of the height l and the base surface y2 which we refer to as the cylinder of 
scattering. Then for the contribution of all the paths with n scatterings one 
obtains 

[r ] 
(NyEp) n exp - - r a  - - n ~  = e x p  ----a + f ( n ' y )  (9) 

where 
nEy 2 

f (n ,  y) = n ln(NyEp) (10) 
? 'a  

The next step is to sum contributions (9)over all n. To this end we estimate 
values of n and y which provide the maximum value o f f (n ,  y): 

1 
nmax ~ NI ura, Ymax = ~,lv)~/a "T~1/2 (I 1) 
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Substituting Eq. (11) into Eq. (10) we obtain Eq. (6). Evidently, Eq. (6) is 
valid if there are many impurities in the typical cylinder of scattering, i.e., 
Ny21> 1. Using Eq. (11) we see that this inequality is identical to the 
inequality B ,~ 1. 

Now we consider the opposite case B > 1. In this case there are no 
impurities in the typical cylinder with parameters of Eq. (11). It means that 
the typical wave function cannot be determine by paths with such 
parameters. Typical paths should have one impurity in the cylinder of 
scattering. It gives 

Ny2l ~ 1 (12) 

Using Eq. (12) for the contribution of one path to q/(r) we obtain from 
Eq. (8) 

(r .,) [r ] 
exp - = exp - + ~o(n) (13) 

a Nr2a --a 

where 

(o(n) - Nr2a + n In (14) 

The function ~o(n) is maximal at 

r 
rt = n m a  x ~ - -  (Na3) 1/2 I n  1/2 B ( 1 5 )  

a 

Substituting Eq. (15) into Eqs. (14) and (13) we obtain Eq. (7). In this 
derivation only one typical path was taken into account. The total number of 
such paths may be roughly estimated as Z n, where Z is a number of 
neighboring cylinders of scattering which is of the order of several units. It is 
seen easily that inclusion of the factor Z n into Eq. (13) does not change the 
main term of the correction Aa given by Eq. (7). 

Thus far we have considered the case ~ > 0 .  If ~ t<0  in the 
homogeneous regime B ~ 1 the correction Aa changes the sign owing to the 
cancellation of terms for different n and Eq. (6) is valid. In the fluctuation 
regime this cancellation results in an exponentially small factor which, 
however, does not change the main term of Eq. (7). 
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